
Detecting Fraud With
Oversampling Techniques and Sparsity Contraints
Prabina Pokharel

p2pokharel@ucsd.edu
Yandong(Dennis) Xiang
yaxiang@ucsd.edu

Jingyu Zhang
jiz036@ucsd.edu

Gal Mishne
gmishne@ucsd.edu

Yusu Wang
yusuwang@ucsd.edu

Abstract

Fraud detection is prevalent now more than ever due to the massive surge
in the usage of online platforms. Many techniques exist to combat fraud;
however, they often fail to capture the imbalanced class structure in data in-
volving fraudulent activities. It’s important to tackle such concern so we can
harness its power to correctly predict anomalies. So, the question remains:
How can we effectively detect and mitigate fraudulent activities, especially
when faced with imbalanced datasets? Our research contributes to the study
of such concern with a model that harnesses the strengths of many existing
techniques from different domains. We propose a solution that utilizes a com-
bination of oversampling techniques and sparsity constraints to balance and
predict fraud data.

Website: https://www.prabina.me/Detecting-Fraud-With-Oversampling-
Techniques-and-Sparsity-Contraints/

Code: https://github.com/yandongxiang/GNN-DSC180A

1 Introduction . 2
2 Methods . 3
3 Implementation Details . 5
4 Results . 6
5 Conclusion . 8

References . 8

https://www.prabina.me/Detecting-Fraud-With-Oversampling-Techniques-and-Sparsity-Contraints/
https://www.prabina.me/Detecting-Fraud-With-Oversampling-Techniques-and-Sparsity-Contraints/
https://github.com/yandongxiang/GNN-DSC180A

1 Introduction
In recent years, there has been a huge surge in the usage of online platforms like Reddit,
Yelp, and Amazon. While the usage of such platforms has positively influenced our daily
lives, fraudulent activities is amid this rapid increase in digital data volume and anonymity
of online networks. Fraudulent behaviors are executed and hidden in plain sight of this
vast amount of online records. Thus, enhancing fraud detection is crucial to protect us
from fraudsters against harmful scams, and even criminal activities.

1.1 Discussion of Prior Work and Our Proposed Solution
With fraud detection in mind, researchers have devised models aimed at enhancing specific
aspects of the task. One such paper whose goal is to detect fake news injects data into
a social graph refinement component that iteratively updates the edge weights using a
learnable degree correction mask (Wu and Hooi 2023). This allows for an improvement of
edge noise in graph datasets and to join information with a GNN-based detector for better
optimization.
Another paper whose task is to detect group frauds in e-commerce platforms utilized an
autoencoder to concatenate weighted structural features with the attributes of customer
vertices to improve accuracy (Yu et al. 2023).
These are two of the many techniques used to detect fraud. As we can see, there are some
solutions in place to detect fraudulent activities; however, such models don’t tackle the
imbalanced structure of fraud datasets very well.
So, our proposed solution is the combination of 2 techniques: GraphSMOTE (Zhao, Zhang
and Wang 2021) and SparseGAD (Gong et al. 2023). GraphSMOTE, although not com-
monly used for fraud detection, is an oversampling technique that identifies minority class
nodes and creates new nodes that resemble those minority class data points, thus helping
it balance. Since datasets involving fraud detection are hugely imbalanced, GraphSMOTE
will help us balance the class distribution in the graph. We will then take the output of this
GraphSMOTE and feed it into SparseGAD, known for anomaly detection by introducing
sparsity constraints. Such constraints help highlight significant connections, and anything
that substantially deviates from that will be looked into further for fraud. Upon applying
these techniques, we feed in the output to our Graph Neural Networks (GNNs) to obtain a
result. We will discuss our model in more detail in the Methods section of this paper.
By tackling this fraud detection task, we hope to contribute to protecting us against scams.

1.2 Datasets
We’ll be implementing our model on three datasets: Amazon, Yelp, and Reddit. These
datasets are obtained from the Deep Graph Library (DGL) and PyGOD. Below are the links
to access these datasets:

2

• Amazon Dataset
• Yelp Dataset
• Reddit Dataset

1.2.1 Info on the Datasets

Amazon Dataset: This dataset includes product reviews under the Musical Instruments
category. This is a binary classification task where users with more than 80% helpful votes
are labeled as benign entities and those with less than 20% are labeled as fraudulent. Pos-
itive (fraudulent) to Negative (benign) ratio is 1:10.5, which shows that it’s imbalanced.
Yelp Dataset: This dataset includes hotel and restaurant reviews. This is a binary classifi-
cation task where it is divided into filtered (spam) and recommended (legitimate). Here,
Positive (spam) to Negative (legitimate) ratio is 1:5.9, which shows that this dataset is also
imbalanced.
Reddit Dataset(Liu et al. 2022): This dataset consists of Reddit posts. The node refers to
the community that a certain post belongs to. The nodes are connected if the same user
comments on both communities. This dataset contains 10,984 posts with an average degree
of 15.3. The ratio between our training and testing dataset is 1:1. The ground truth states
that there is a 3.3% anomaly (outlier), which shows that, along with the other two datasets,
this is also imbalanced.
All of the datasets we choose for our model come from a reputable library (DGL and Py-
GOD), and have been used in many research papers. They will be useful for our model
since it’s tasked to fix imbalances while doing anomaly detection.

2 Methods
We are tackling this task using GNNs, or more specifically Graph Anomaly Detection (GAD).
Previous works on anomaly detection exist; however, we observed that none of them at-
tempted to create a GraphSMOTE model specifically designed for anomaly detection. This
is striking because while the GraphSMOTE model performs well on imbalanced datasets, it
is not designed to capture anomalous users among the common users.
GraphSMOTE is designed to add synthetic nodes to the graph to balance the dataset. In
the case of graph anomalous user detection, the anomalous users only represent a small
portion of the dataset. To balance out the dataset, we added synthetic anomalous nodes
into the graph to create a balanced, amplified dataset. The GraphSMOTE model typically
runs an edge generator to generate edges on the synthetic nodes to find their links to other
nodes. To not disturb the connection between the synthetic node and other nodes, we used
a specific method to both preserve node connections and create synthesized nodes.
The GraphSMOTEmodel alone does not capture the heterophily nature of anomalous nodes.
Anomalous users often show greater dissimilarity with their connected users despite their
attempt to blend into common users by establishing fake connections with other users. After

3

https://docs.dgl.ai/en/0.8.x/generated/dgl.data.FraudAmazonDataset.html
https://docs.dgl.ai/en/0.8.x/generated/dgl.data.FraudYelpDataset.html
https://github.com/pygod-team/data

using the SMOTE method to create a balanced dataset, we implemented SparseGAD tech-
niques to add sparsity into the graph and generate a learnable adjacency matrix (homey
matrix) to identify whether the connected nodes are similar or dissimilar. In this way, we
can allow our model to both address the imbalanced nature of the dataset and observe the
nature of heterophily in anomalous nodes.

2.1 Synthetic Node Generation
In particular, we would use the SMOTE method to generate synthetic nodes. First, we
determine which class label belongs to the minority class. In our case, the minority class
is typically the anomalous users, as they generally occur less frequently than the common
users. To generate synthetic nodes to amplify the minority class, we use the upsampling
method to randomly replicate nodes and reproduce their connections with their neighbors.
The reason we aim for identical neighbors for the synthetic nodes is to maintain a similar
level of heterogeneity for the links of the minority classes. We then add randomized minor
differences in the features of synthetic nodes to create distinctions between synthetic nodes
and the original nodes, as in the SMOTE method. To clarify, the reason why we avoid
randomized differences in link connections is that we do not want to disrupt the model’s
ability to identify the heterophilic nature of the anomalous nodes.

2.2 Homey Graph Generation
Instead of the original adjacency matrix, we utilized the “homey” adjacency matrix concept
from the GraphSMOTEmodel. In this model, a single-layer GCN (Graph Convolution Neural
Network) embedding is implemented to calculate the cosine similarity of the adjacent node
pairs, following this function, where each item in the homey matrix H is computed with
cosine similarity.

Huv = cosine similarity= A · B
∥A∥∥B∥ =

∑n
i=1 AiBiq∑n

i=1 A2
i

q∑n
i=1 B2

i

∈ [−1,1] (1)

Here, Huv ranges from -1 to 1. When Huv = 1, it means the node pair is homophilic; when
Huv = −1, the node pair is heterophilic. When the node pair has no relation, Huv = 0.

2.3 Sparsification
Although we have calculated cosine similarity for the homey matrix, we still haven’t ad-
dressed the nature of anomalous users camouflaging themselves among the common users.
Thus, we also need the sparsification method from SparseGAD to filter out elements in the
adjacency matrix. We use δ as the threshold to remove unnecessary neighbors.

4

Huv =

¨
0 if Huv ≤ δ
Huv otherwise (2)

After setting δ as a threshold, SparseGAD further utilizes KNN to limit the number of nec-
essary connections. Finally, the GAD-oriented regularization developed in SparseGAD is
employed to further sparsify the graph, preventing faulty links from hindering the model’s
ability to distinguish anomalous users.

2.4 Learning Objective
In the end, we use our model to classify the users into normal users and abnormal users
based on the node features and neighborhood similarity. We use the following ROC-AUC
score.

ROC_AUC=
1

m(m− 1)

m∑
i=1

m∑
j=1, j ̸=i

AUCi j (3)

We use the ROC-AUC score as the metric to measure whether our model outperforms the
baseline models.

3 Implementation Details

3.1 Main Paths
Our approach to detecting fraud involves three main paths, each of which utilizes a different
preprocessing technique before applying GNN models (such as GCN, GAT, or GraphSage).

• Baseline Path: Here, we directly input the dataset into the chosen GNNmodel. This
path serves as our baseline for comparison against the other paths.

• GraphSMOTE Path: In this path, we apply the GraphSMOTE technique discussed in
theMethods section before feeding it into the chosen GNNmodel. Again, GraphSMOTE
is an oversampling technique, which helps address the imbalance in the dataset by
generating synthetic nodes.

• GraphSMOTEwith NewAdjacencyMatrix Path: In this path, we utilize GraphSMOTE
and the principles of SparseGAD. Here, the SparseGAD receives the balanced dataset
generated by GraphSMOTE and incorporates consine similarity matrix and sparsity
constraints which helps highlight significant connections and anomalies in the graph.

5

3.2 Hyperparameter Tuning
After applying each path, we perform hyperparameter tuning on the models, focusing pri-
marily on adjusting the learning rate to optimize performance. This step ensures that the
model learns the most relevant features from the dataset and improves its ROC-AUC score.
Upon experimenting with different implementations, we found that learning rate matters
the most in improving our metrics. We found that a learning rate of 0.001 works best for the
Amazon dataset and a learning rate of 0.00001 works best for Yelp and Reddit datasets. We
run 300 epochs for both Pretrain and Finetune models. In both cases, we select one model
from GCN, GAT, and GraphSage and apply one layer of it in the encoder and 2 layers of it
with 64 nodes in the hidden layer in the classifier.

3.3 Decision Stage
Finally, we use the trained GNNmodel to classify nodes as either fraudulent or non-fraudulent
based on their features and neighborhood structure. We evaluate the model’s performance
using the ROC-AUC score based on its ability to correctly identify anomalies in the dataset.

4 Results
Now, let’s compare the models’ performance on each of these datasets.

Table 1: Performance of different models on various datasets

Models Yelp (%) Reddit (%) Amazon (%)
GCN 73.01 55.26 81.26
GAT 72.22 62.93 85.07
GraphSage 76.94 64.86 84.82
GraphSmote+GCN 63.37 45.02 73.94
GraphSmote+GAT 53.74 55.94 75.56
GraphSmote+GraphSage 64.08 56.46 89.83
Modified GraphSmote+GCN 58.83 43.80 74.65
Modified GraphSmote+GAT 54.08 50.00 78.86
Modified GraphSmote+GraphSage 67.36 56.12 90.02

As we can see in Table 1, the GraphSage model performs best on Yelp and Reddit datasets,
and the GraphSage with Modified GraphSMOTE performs best on the Amazon dataset.
We first aim to explain why GraphSAGE outperforms GCN and GAT on the Yelp and Reddit
datasets, while achieving a similar ROC-AUC on the Amazon dataset. Our intuition is that
this discrepancy arises from the structural differences between the datasets. As observed
in Figure 1, both the Yelp and Reddit datasets exhibit relatively sparser structures, whereas
the Amazon dataset presents a more condensed structure. This condensed structure in

6

Figure 1: General Structure of the Datasets

the Amazon dataset allows the weights in the GAT model on each neighbor’s features to
have greater significance compared to those in the Yelp and Reddit datasets. On the other
hand, the GraphSAGE model samples and aggregates from the neighboring nodes. On the
Yelp and Reddit datasets, the simplicity of the GraphSAGE method facilitates better model
tuning and results in improved convergence, thereby enabling the GraphSAGE model to
outperform the GAT model on these datasets.
The main reasons why we believe our GraphSAGE performs well on the Yelp and Reddit
datasets, and GraphSAGE with Modified GraphSMOTE on the Amazon dataset, are related
to the degrees of connectivity and the number of connected nodes. Below, we present the
degree distribution of the datasets.

Figure 2: Degree Distribution of the Datasets

Aswe see in Figure 2, in the Yelp and Reddit datasets, themedian number of degrees is lower
(6 and 1 respectively) vs. Amazon (which has 42). This discrepancy may reflect variations
in the connectivity and structural complexity of the datasets, which directly influence the
performance of fraud detection models. Furthermore, Yelp and Reddit datasets have more
nodes with only self-loops (106 and 625 respectively) compared to Amazon (which has 6).
This lack of connectivity in the Yelp and Amazon datasets limits the potential for synthetic
nodes generated by the SMOTE method to establish meaningful connections within the
graph. As a result, the ability of the SMOTE method to effectively balance the class distri-

7

bution while maintaining dataset structure may be constrained in Yelp and Reddit datasets
whereas flourished in the Amazon dataset. Thus, the GraphSMOTE and the Modified
GraphSMOTE models were unable to surpass the performance of the baseline GraphSage
model.
Similarly, in the Amazon dataset, both the GraphSMOTE and Modified GraphSMOTE mod-
els, when paired with the GCN and GAT classifiers, failed to outperform the baselinemodels.
However, our GraphSMOTE and Modified GraphSMOTE models that used the GraphSage
classifier improved the ROC-AUC score by more than 5%. This suggests that the sampling
and aggregating method employed by GraphSAGE is less prone to overfit to the added syn-
thetic users, while GCN and GAT are more likely to be negatively affected by the changes in
data structure introduced by GraphSMOTE. However, due to the variance in the final ROC-
AUC score, there is not a significant difference between the GraphSMOTE and Modified
GraphSMOTE models with the GraphSAGE classifier. Nevertheless, there is a significant in-
crease in the ROC-AUC score between the GraphSMOTE and Modified GraphSMOTE mod-
els with the GAT classifier. It seems that GAT benefits from the sparsified cosine-similarity
matrix, which allows the GAT classifier to focus more on determining the cosine similarity
between nodes when weighing neighboring nodes. Thus resulting in a 3% increase in the
ROC-AUC score of the Modified GraphSMOTE model with GAT classifier compared to the
original GraphSMOTE model.
This disparity in performance highlights the importance of tailoring the model to the char-
acteristics of the dataset.

5 Conclusion
In this paper, we introduced GraphSMOTE and SparseGAD together to perform graph-based
anomaly detection on imbalanced datasets. Under GraphSMOTE, we added synthetic nodes
to the graph to balance the dataset. With SparseGAD, we accounted for both heterophilic
and homophilic dependencies among nodes to streamline graph structure and collectively
refine distinctive node representations for detecting anomalies. Our experiments show that,
due to the lack of connectivity in Yelp and Reddit nodes, the modified model is unable
to surpass the performance of the GraphSage model. It however showed that modified
GraphSMOTE with GraphSage performs best on the Amazon dataset for detecting fraudu-
lent users.
In the future, we would like to refine the model to accommodate variability in datasets such
as degrees of connectivity and number of connected nodes.

8

References
Gong, Zheng, Guifeng Wang, Ying Sun, Qi Liu, Yuting Ning, Hui Xiong, and Jingyu

Peng. 2023. “Beyond Homophily: Robust Graph Anomaly Detection via Neural Sparsi-
fication.” In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI.

Liu, Kay, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize
Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H Chen,
Zhihao Jia, and Philip S Yu. 2022. “BOND: Benchmarking Unsupervised Outlier Node
Detection on Static Attributed Graphs.” In Advances in Neural Information Processing Sys-
tems 35. Curran Associates, Inc. [Link]

Wu, Jiaying, and Bryan Hooi. 2023. “DECOR: Degree-Corrected Social Graph Refinement
for Fake News Detection.” In Proceedings of the 29th ACM SIGKDDConference on Knowledge
Discovery and Data Mining.

Yu, Jianke, Hanchen Wang, Xiaoyang Wang, Zhao Li, Lu Qin, Wenjie Zhang, Jian Liao,
and Ying Zhang. 2023. “Group-based Fraud Detection Network on e-Commerce Plat-
forms.” In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. New York, NY, USA Association for Computing Machinery. [Link]

Zhao, Tianxiang, Xiang Zhang, and Suhang Wang. 2021. “GraphSMOTE: Imbalanced
Node Classification on Graphs with Graph Neural Networks.” In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. ACM. [Link]

9

https://proceedings.neurips.cc/paper_files/paper/2022/file/acc1ec4a9c780006c9aafd595104816b-Paper-Datasets_and_Benchmarks.pdf
http://dx.doi.org/10.1145/3580305.3599836
http://dx.doi.org/10.1145/3437963.3441720

	1 Introduction
	2 Methods
	3 Implementation Details
	4 Results
	5 Conclusion
	References

